|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Точка внутри выпуклого четырёхугольника соединена с вершинами. Получились четыре равных треугольника. В таблице $n\times n$ стоят все целые числа от 1 до $n^2$, по одному в клетке. В каждой строке числа возрастают слева направо, в каждом столбце – снизу вверх. Докажите, что наименьшая возможная сумма чисел на главной диагонали, идущей сверху слева вниз направо, равна $1^2+2^2+\ldots+n^2$. Докажите, что: а) rp = ra(p - a), rra = (p - b)(p - c) и rbrc = p(p - a); б) S2 = p(p - a)(p - b)(p - c) (формула Герона); в) S2 = rrarbrc. |
Страница: 1 2 3 >> [Всего задач: 14]
а) a = r(ctg( б) a = ra(tg( в) p - b = rctg( г) p = ractg(
а) rp = ra(p - a), rra = (p - b)(p - c) и rbrc = p(p - a); б) S2 = p(p - a)(p - b)(p - c) (формула Герона); в) S2 = rrarbrc.
Страница: 1 2 3 >> [Всего задач: 14] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|