ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите неравенство для положительных значений переменных:   a²(1 + b4) + b²(1 + a4) ≤ (1 + a4)(1 + b4).

Вниз   Решение


Внутри выпуклого четырехугольника ABCD площади S взята точка O, причем  AO2 + BO2 + CO2 + DO2 = 2S. Докажите, что тогда ABCD — квадрат и O — его центр.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 6]      



Задача 57340

Тема:   [ Площадь треугольника не превосходит половины произведения двух сторон ]
Сложность: 5
Классы: 9

Внутри выпуклого четырехугольника ABCD площади S взята точка O, причем  AO2 + BO2 + CO2 + DO2 = 2S. Докажите, что тогда ABCD — квадрат и O — его центр.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .