|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Доказать, что в круге радиуса 1 нельзя найти более 5 точек, попарные расстояния между которыми все больше 1. Ваня задумал два положительных числа x и y. Он записал числа x + y, x – y, xy и x/y и показал их Пете, но не сказал, какое число какой операцией получено. Докажите, что Петя сможет однозначно восстановить x и y. Дан вписанный четырехугольник $ABCD$. Прямые $AB$ и $DC$ пересекаются в точке $E$, а прямые $BC$ и $AD$ — в точке $F$. В треугольнике $AED$ отмечен центр вписанной окружности $I$, а из точки $F$ проведен луч, перпендикулярный биссектрисе угла $AID$. В каком отношении этот луч делит угол $AFB$? Можно ли все клетки таблицы 9×2002 заполнить натуральными числами так, чтобы суммы чисел в каждом столбце и суммы чисел в каждой строке были бы простыми числами? Многоугольник разрезан на несколько многоугольников. Пусть p — количество полученных многоугольников, q — количество отрезков, являющихся их сторонами, r — количество точек, являющихся их вершинами. Докажите, что p - q + r = 1. Клетчатый прямоугольник размера 7×14 разрезали по линиям сетки на квадраты 2×2 и уголки из трёх клеток. Могло ли квадратов получиться Четыре кузнечика сидят в вершинах квадрата. Каждую минуту один из них прыгает в точку, симметричную ему относительно другого кузнечика. Докажите, что кузнечики не могут в некоторый момент оказаться в вершинах квадрата большего размера. Деревянный куб покрасили снаружи белой краской, каждое его ребро разделили на 5 равных частей, после чего куб распилили так, что получились маленькие кубики, у которых ребро в 5 раз меньше, чем у исходного куба. Сколько получилось маленьких кубиков, у которых окрашена хотя бы одна грань? В шахматном турнире на звание мастера спорта участвовало 12 человек, каждый
сыграл с каждым по одной партии. За победу в партии даётся 1 очко, за ничью – 0,5 очка, за поражение – 0 очков. По итогам турнира звание мастера спорта присваивали, если участник набрал более 70% от числа очков, получаемых в
случае выигрыша всех партий. Могли ли получить звание мастера спорта Внутри треугольника ABC взята точка M. Докажите, что 4S |
Страница: 1 2 >> [Всего задач: 6]
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|