ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что для любого натурального n выполнено неравенство  (n – 1)n+1(n + 1)n–1 < n2n.

Вниз   Решение


Двое играют в такую игру. Из кучки, где имеется 25 спичек, каждый берёт себе по очереди одну, две или три спички. Выигрывает тот, у кого в конце
игры – после того, как все спички будут разобраны, – окажется чётное число спичек.
  а) Кто выигрывает при правильной игре – начинающий или его партнёр? Как он должен играть, чтобы выиграть?
  б) Как изменится ответ, если считать, что выигрывает забравший нечётное число спичек?
  в) Исследуйте эту игру в общем случае, когда спичек  2n + 1  и разрешено брать любое число спичек от 1 до m.

ВверхВниз   Решение


На боковых сторонах AB и CD трапеции ABCD взяты точки M и N так, что отрезок MN параллелен основаниям и делит площадь трапеции пополам. Найдите длину MN, если BC = a и AD = b.

ВверхВниз   Решение


Окружности S1 и S2 пересекаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке BS2 в точке C. В точках C и B проведены касательные к окружностям, пересекающиеся в точке D. Докажите, что угол BDC не зависит от выбора прямой, проходящей через A.

ВверхВниз   Решение


Сколько последовательностей  {a1, a2, ..., a2n},  состоящих из единиц и минус единиц, обладают тем свойством, что  a1 + a2 + ... + a2n = 0,  а все частичные суммы  a1,  a1 + a2,  ...,  a1 + a2 + ... + a2n  неотрицательны?

ВверхВниз   Решение


Какое наименьшее количество квадратиков 1×1 надо нарисовать, чтобы получилось изображение квадрата 25×25, разделённого на 625 квадратиков 1×1?

ВверхВниз   Решение


С помощью одной двусторонней линейки:
а) через данную точку проведите прямую, параллельную данной прямой;
б) постройте середину данного отрезка.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 57278

Тема:   [ Построения с помощью двусторонней линейки ]
Сложность: 3
Классы: 8,9

Выполните построения с помощью линейки с двумя параллельными краями (двусторонней линейки) без циркуля.
а) Постройте биссектрису данного угла AOB.
б) Дан острый угол AOB. Постройте угол BOC, биссектрисой которого является луч OA.
Прислать комментарий     Решение


Задача 57279

Тема:   [ Построения с помощью двусторонней линейки ]
Сложность: 3
Классы: 8,9

С помощью одной двусторонней линейки восставьте перпендикуляр к данной прямой l в данной точке A.
Прислать комментарий     Решение


Задача 57280

Тема:   [ Построения с помощью двусторонней линейки ]
Сложность: 3
Классы: 8,9

С помощью одной двусторонней линейки:
а) через данную точку проведите прямую, параллельную данной прямой;
б) постройте середину данного отрезка.
Прислать комментарий     Решение


Задача 57281

Тема:   [ Построения с помощью двусторонней линейки ]
Сложность: 4
Классы: 8,9

Даны угол AOB, прямая l и точка P на ней. С помощью одной двусторонней линейки проведите через точку P прямые, образующие с прямой l угол, равный углу AOB.
Прислать комментарий     Решение


Задача 57282

Тема:   [ Построения с помощью двусторонней линейки ]
Сложность: 4
Классы: 8,9

Даны отрезок AB, непараллельная ему прямая l и точка M на ней. С помощью одной двусторонней линейки постройте точки пересечения прямой l с окружностью радиуса AB с центром M.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .