|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Все углы выпуклого многоугольника A1...An равны, и из некоторой его внутренней точки O все стороны видны под равными углами. Бесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа. Докажите, что по крайней мере одно из оснований перпендикуляров, опущенных из внутренней точки выпуклого многоугольника на его стороны, лежит на самой стороне, а не на ее продолжении. а) На параллельных прямых a и b даны точки A и B. Проведите через данную точку C прямую l, пересекающую прямые a и b в таких точках A1 и B1, что AA1 = BB1. б) Проведите через точку C прямую, равноудаленную от данных точек A и B. |
Страница: 1 [Всего задач: 4]
б) Проведите через точку C прямую, равноудаленную от данных точек A и B.
Страница: 1 [Всего задач: 4] |
||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|