|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи а) Докажите, что описанная окружность треугольника ABC является окружностью девяти точек для треугольника, образованного центрами вневписанных окружностей треугольника ABC. б) Докажите, что описанная окружность делит пополам отрезок, соединяющий центры вписанной и вневписанной окружностей. |
Страница: 1 2 >> [Всего задач: 10]
Докажите, что основания высот, середины сторон и середины отрезков от ортоцентра до вершин треугольника лежат на одной окружности.
Докажите, что в любом треугольнике точка H пересечения высот (ортоцентр), центр O описанной окружности и точка M пересечения медиан (центр тяжести) лежат на одной прямой, причём точка M расположена между точками O и H, и MH = 2MO.
б) Докажите, что описанная окружность делит пополам отрезок, соединяющий центры вписанной и вневписанной окружностей.
а) Докажите, что треугольники ABC, HBC, AHC и ABH имеют общую окружность девяти точек. б) Докажите, что прямые Эйлера треугольников ABC, HBC, AHC и ABH пересекаются в одной точке. в) Докажите, что центры описанных окружностей треугольников ABC, HBC, AHC и ABH образуют четырехугольник, симметричный четырехугольнику HABC.
Страница: 1 2 >> [Всего задач: 10] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|