ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Решить систему:

    10x1 + 3x2 + 4x3 + x4 + x5 = 0,
    11x2 + 2x3 + 2x4 + 3x5 + x6 = 0,
    15x3 + 4x4 + 5x5 + 4x6 + x7 = 0,
    2x1 + x2 – 3x3 + 12x4 – 3x5 + x6 + x7 = 0,
    6x1 – 5x2 + 3x3x4 + 17x5 + x6 = 0,
    3x1 + 2x2 – 3x3 + 4x4 + x5 – 16x6 + 2x7 = 0,
    4x1 – 8x2 + x3 + x4 – 3x5 + 19x7 = 0.

Вниз   Решение


В треугольнике ABC высота BD образует со стороной BC угол в 45°. Считается, что прямая BD, содержащая высоту, уже построена. Как одним движением циркуля построить ортоцентр треугольника ABC?

ВверхВниз   Решение


Дан трёхгранный угол. Рассмотрим три плоскости, содержащие его грани. Эти плоскости разбивают пространство на восемь трёхгранных углов. а) Найдите плоские углы всех образовавшихся трёхгранных углов, если плоские углы исходного трёхгранного угла равны x , y и z . б) Найдите двугранные углы всех образовавшихся трёхгранных углов, если двугранные углы исходного трёхгранного угла равны α , β и γ .

ВверхВниз   Решение


В треугольнике ABC проведены триссектрисы (лучи, делящие углы на три равные части). Ближайшие к стороне BC триссектрисы углов B и C пересекаются в точке A1; аналогично определим точки B1 и C1 (см. рис.). Докажите, что треугольник A1B1C1 равносторонний.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 21]      



Задача 56893

 [Теорема Морли]
Темы:   [ Вспомогательные подобные треугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 5
Классы: 9,10,11

В треугольнике ABC проведены триссектрисы (лучи, делящие углы на три равные части). Ближайшие к стороне BC триссектрисы углов B и C пересекаются в точке A1; аналогично определим точки B1 и C1 (см. рис.). Докажите, что треугольник A1B1C1 равносторонний.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .