Версия для печати
Убрать все задачи
Дан треугольник
ABC. На его стороне
AB
выбирается точка
P и через нее проводятся прямые
PM и
PN,
параллельные
AC и
BC соответственно (точки
M и
N лежат
на сторонах
BC и
AC);
Q — точка пересечения описанных
окружностей треугольников
APN и
BPM. Докажите, что все
прямые
PQ проходят через фиксированную точку.

Решение
Можно ли в таблице 6×6 расставить числа 0, 1 и -1 так, чтобы все суммы по вертикалям, горизонталям и двум диагоналям были различны?


Решение
Турист шел 3,5 часа, причём за каждый промежуток времени в один час он проходил ровно 5 км.
Следует ли из этого, что его средняя скорость равна 5 км/час?


Решение
Доказать, что любое натуральное число можно представить в виде суммы нескольких
различных членов последовательности
1, 2, 3, 5, 8, 13, ...,
an =
an - 1 +
an - 2,....


Решение
На продолжении хорды
KL окружности с центром
O
взята точка
A, и из нее проведены касательные
AP и
AQ;
M — середина отрезка
PQ. Докажите, что
MKO =
MLO.

Решение