ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Дан треугольник ABC. На его стороне AB выбирается точка P и через нее проводятся прямые PM и PN, параллельные AC и BC соответственно (точки M и N лежат на сторонах BC и AC); Q — точка пересечения описанных окружностей треугольников APN и BPM. Докажите, что все прямые PQ проходят через фиксированную точку.

Вниз   Решение


Можно ли в таблице 6×6 расставить числа 0, 1 и -1 так, чтобы все суммы по вертикалям, горизонталям и двум диагоналям были различны?

ВверхВниз   Решение


Турист шел 3,5 часа, причём за каждый промежуток времени в один час он проходил ровно 5 км.
Следует ли из этого, что его средняя скорость равна 5 км/час?

ВверхВниз   Решение


Доказать, что любое натуральное число можно представить в виде суммы нескольких различных членов последовательности 1, 2, 3, 5, 8, 13, ..., an = an - 1 + an - 2,....

ВверхВниз   Решение


На продолжении хорды KL окружности с центром O взята точка A, и из нее проведены касательные AP и AQM — середина отрезка PQ. Докажите, что  $ \angle$MKO = $ \angle$MLO.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 56684

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 2
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности с центром O. Докажите, что если из точки M отрезок AO виден под углом  90o, то отрезки OB и OC видны из нее под равными углами.
Прислать комментарий     Решение


Задача 56685

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности с центром O. Через точку X отрезка BC проведена прямая KL, перпендикулярная XO (точки K и L лежат на прямых AB и AC). Докажите, что KX = XL.
Прислать комментарий     Решение


Задача 56686

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

На продолжении хорды KL окружности с центром O взята точка A, и из нее проведены касательные AP и AQM — середина отрезка PQ. Докажите, что  $ \angle$MKO = $ \angle$MLO.
Прислать комментарий     Решение


Задача 56689

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

Даны окружность S и прямая l, не имеющие общих точек. Из точки P, движущейся по прямой l, проводятся касательные PA и PB к окружности S. Докажите, что все хорды AB имеют общую точку.



Прислать комментарий     Решение

Задача 56687

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 5
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности и секущая, пересекающая окружность в точках D и EM — середина отрезка BC. Докажите, что  BM2 = DM . ME и угол DME в два раза больше угла DBE или угла DCE; кроме того,  $ \angle$BEM = $ \angle$DEC.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .