|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Прямая пересекает стороны AB, BC и CA треугольника (или их продолжения) в точках C1, B1 и A1; O, Oa, Ob и Oc — центры описанных окружностей треугольников ABC, AB1C1, A1BC1 и A1B1C; H, Ha, Hb и Hc — ортоцентры этих треугольников. Докажите, что: а) б) серединные перпендикуляры к отрезкам OH, OaHa, ObHb и OcHc пересекаются в одной точке. |
Страница: 1 [Всего задач: 5]
а) Докажите, что описанные окружности этих треугольников имеют общую точку (точка Микеля). б) Докажите, что центры описанных окружностей этих треугольников лежат на одной окружности, проходящей через точку Микеля.
а) б) серединные перпендикуляры к отрезкам OH, OaHa, ObHb и OcHc пересекаются в одной точке.
а) точки A, D, P и O лежат на одной окружности; б)
Страница: 1 [Всего задач: 5] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|