|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Даны два выпуклых многоугольника A1A2A3A4...An и B1B2B3B4...Bn. Известно, что A1A2 = B1B2, A2A3 = B2B3,..., AnA1 = BnB1 и n - 3 угла одного многоугольника равны соответственным углам другого. Будут ли многоугольники равны? Точки A, B, C и D лежат на окружности с центром O. Прямые AB и CD пересекаются в точке E, а описанные окружности треугольников AEC и BED пересекаются в точках E и P. Докажите, что: а) точки A, D, P и O лежат на одной окружности; б) Петя задумал натуральное число и для каждой пары его цифр выписал на доску их разность. После этого он стер некоторые разности, и на доске остались числа 2, 0, 0, 7. Какое наименьшее число мог задумать Петя? а) В Стране Чудес есть три города A, B и C. Из города A в город B ведет 6 дорог, а из города B в город C – 4 дороги. Двухсотзначное число 89252525...2525 умножено на число 444x18y27 (x и y — неизвестные цифры). Оказалось, что 53-я цифра полученного числа (считая справа) есть 1, а 54-я — 0. Найти x и y. Четыре прямые образуют четыре треугольника. а) Докажите, что описанные окружности этих треугольников имеют общую точку (точка Микеля). б) Докажите, что центры описанных окружностей этих треугольников лежат на одной окружности, проходящей через точку Микеля. |
Страница: 1 [Всего задач: 5]
а) Докажите, что описанные окружности этих треугольников имеют общую точку (точка Микеля). б) Докажите, что центры описанных окружностей этих треугольников лежат на одной окружности, проходящей через точку Микеля.
а) б) серединные перпендикуляры к отрезкам OH, OaHa, ObHb и OcHc пересекаются в одной точке.
а) точки A, D, P и O лежат на одной окружности; б)
Страница: 1 [Всего задач: 5] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|