ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что уравнение  3x² + 2 = y²  нельзя решить в целых числах.

Вниз   Решение


Уравнение  x² + px + q = 0  имеет корни x1 и x2. Напишите уравнение, корнями которого будут числа y1, y2 равные:

а)       б)       в)       г)  

ВверхВниз   Решение


Автор: Фольклор

Найдите все натуральные $n$, удовлетворяющие условию: числа $1, 2, 3, \ldots, 2n$ можно разбить на пары так, что если сложить числа в каждой паре и результаты перемножить, получится квадрат натурального числа.

ВверхВниз   Решение


Игра с тремя кучками камней. Имеется три кучки камней: в первой — 10, во второй — 15, в третьей — 20. За ход разрешается разбить любую кучку на две меньшие части; проигрывает тот, кто не сможет сделать хода.

ВверхВниз   Решение


В озере растут лотосы. За сутки каждый лотос делится пополам, и вместо одного лотоса появляются два. Ещё через сутки каждый из получившихся лотосов делится пополам и так далее. Через 30 суток озеро полностью покрылось лотосами. Через какое время озеро было заполнено наполовину?

ВверхВниз   Решение


Через центр квадрата проведены две перпендикулярные прямые. Докажите, что их точки пересечения со сторонами квадрата образуют квадрат.

ВверхВниз   Решение


Касательная в точке A к описанной окружности треугольника ABC пересекает прямую BC в точке EAD — биссектриса треугольника ABC. Докажите, что AE = ED.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 56562

Тема:   [ Угол между касательной и хордой ]
Сложность: 2
Классы: 8

Две окружности пересекаются в точках P и Q. Через точку A первой окружности проведены прямые AP и AQ, пересекающие вторую окружность в точках B и C. Докажите, что касательная в точке A к первой окружности параллельна прямой BC.
Прислать комментарий     Решение


Задача 56564

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Окружности S1 и S2 пересекаются в точках A и B. Через точку A проведена касательная AQ к окружности S1 (точка Q лежит на S2), а через точку B -- касательная BS к окружности S2 (точка S лежит на S1). Прямые BQ и AS пересекают окружности S1 и S2 в точках R и P. Докажите, что PQRS — параллелограмм.
Прислать комментарий     Решение


Задача 56565

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Касательная в точке A к описанной окружности треугольника ABC пересекает прямую BC в точке EAD — биссектриса треугольника ABC. Докажите, что AE = ED.
Прислать комментарий     Решение


Задача 56566

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Окружности S1 и S2 пересекаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке BS2 в точке C. В точках C и B проведены касательные к окружностям, пересекающиеся в точке D. Докажите, что угол BDC не зависит от выбора прямой, проходящей через A.
Прислать комментарий     Решение


Задача 56567

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Две окружности пересекаются в точках A и B. Из точки A к этим окружностям проведены касательные AM и AN (M и N — точки окружностей). Докажите, что:
а)  $ \angle$ABN + $ \angle$MAN = 180o;
б)  BM/BN = (AM/AN)2.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .