ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Как связано разложение рационального числа в цепную дробь с алгоритмом Евклида?

Вниз   Решение


В бесконечной последовательности  a1, a2, a3, ... число a1 равно 1, а каждое следующее число an строится из предыдущего an–1 по правилу: если у числа n наибольший нечётный делитель имеет остаток 1 от деления на 4, то  an = an–1 + 1,  если же остаток равен 3, то  an = an–1 – 1.  Докажите, что в этой последовательности
  а) число 1 встречается бесконечно много раз;
  б) каждое натуральное число встречается бесконечно много раз.
(Вот первые члены этой последовательности: 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, ...)

ВверхВниз   Решение


Существуют ли такие простые числа p1, p2, ..., p2007, что    делится на p2,    делится на p3, ...,    делится на p1?

ВверхВниз   Решение


Дан описанный четырёхугольник ABCD, P, Q и R – основания перпендикуляров, опущенных из вершины D на прямые BC, CA, AB соответственно. Докажите, что биссектрисы углов ABC, ADC и диагональ AC пересекаются в одной точке тогда и только тогда, когда  |PQ| = |QR|.

ВверхВниз   Решение


В треугольник с основанием a и высотой h вписан квадрат так, что две его вершины лежат на основании треугольника, а две другие – на боковых сторонах.
Найдите сторону квадрата.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 56451

Тема:   [ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 2
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Докажите, что  A1C·BC = B1C·AC.

Прислать комментарий     Решение

Задача 56452

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Признаки подобия ]
Сложность: 2
Классы: 8,9

В прямоугольном треугольнике ABC с прямым углом C проведена высота  CH. Докажите, что  AC² = AB·AH  и  CH² = AH·BH.

Прислать комментарий     Решение

Задача 53756

Тема:   [ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 8,9

В треугольник с основанием a и высотой h вписан квадрат так, что две его вершины лежат на основании треугольника, а две другие – на боковых сторонах.
Найдите сторону квадрата.

Прислать комментарий     Решение

Задача 56453

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Две пары подобных треугольников ]
[ Удвоение медианы ]
Сложность: 3
Классы: 8,9

Докажите, что медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении  2 : 1,  считая от вершины.

Прислать комментарий     Решение

Задача 56454

Тема:   [ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

На стороне BC треугольника ABC взята точка A1 так, что  BA1 : A1C = 2 : 1.  В каком отношении медиана CC1 делит отрезок AA1?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .