ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

С выпуклым четырехугольником ABCD проделывают следующую операцию: одну из данных вершин меняют на точку, симметричную этой вершине относительно серединного перпендикуляра к диагонали (концом которой она не является), обозначив новую точку прежней буквой. Эту операцию последовательно применяют к вершинам A, B, C, D, A, B,... - всего n раз. Назовем четырехугольник допустимым, если его стороны попарно различны и после применения любого числа операций он остается выпуклым. Существует ли:
а) допустимый четырехугольник, который после n<5 операций становится равным исходному;
б) такое число n0, что любой допустимый четырехугольник после n=n0 операций становится равным исходному?

Вниз   Решение


Существуют ли два многоугольника, у которых все вершины общие, но нет ни одной общей стороны?

ВверхВниз   Решение


Решите систему уравнений
    x + y + u = 4,
    y + u + v = –5,
    u + v + x = 0,
    v + x + y = –8.

ВверхВниз   Решение


В треугольнике ABC угол B равен 60o, биссектрисы AD и CE пересекаются в точке O. Докажите, что OD = OE.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 2]      



Задача 52471  (#М582)

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

Четырёхугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O. Найдите расстояние от точки O до стороны AB, если известно, что CD = 8.

Прислать комментарий     Решение


Задача 52393  (#М586)

Темы:   [ Углы между биссектрисами ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Вспомогательная окружность ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC угол B равен 60o, биссектрисы AD и CE пересекаются в точке O. Докажите, что OD = OE.

Прислать комментарий     Решение


Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .