|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Гуляя по Кенигсбергу, Леонард Эйлер захотел обойти город, пройдя по каждому мосту ровно один раз (см. рис.). Как ему это сделать? В магазин завезли 20 кг сыра, за ним выстроилась очередь. Отпустив сыр очередному покупателю, продавщица безошибочно подсчитывает средний вес покупки по всему проданному сыру и сообщает, на сколько человек хватит оставшегося сыра, если все будут покупать именно по этому среднему весу. Могла ли продавщица после каждого из первых 10 покупателей сообщать, что сыра хватит ещё ровно на 10 человек? Если да, то сколько сыра осталось в магазине после первых 10 покупателей? Длины сторон треугольника ABC равны a, b и c (AB = c, BC = a, CA = b и a < b < c). На лучах BC и AC отмечены соответственно такие точки B1 и A1, что BB1 = AA1 = c. На лучах CA и BA отмечены соответственно такие точки C2 и B2, что CC2 = BB2 = a. Найти A1B1 : C2B2. Докажите, что 1 + 277 + 377 + ... + 199677 делится на 1997. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]
Найдите самое маленькое k, при котором k! делится на 2040.
Докажите, что 1 + 277 + 377 + ... + 199677 делится на 1997.
Можно ли семь телефонов соединить проводами так, чтобы каждый телефон был соединён ровно с тремя?
Можно ли расположить на плоскости
Гуляя по Кенигсбергу, Леонард Эйлер захотел обойти город, пройдя по каждому мосту ровно один раз (см. рис.). Как ему это сделать?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|