ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника?

Вниз   Решение


На стороны BC и CD параллелограмма ABCD (или на их продолжения) опущены перпендикуляры AM и AN.
Докажите, что треугольники MAN и ABC подобны.

ВверхВниз   Решение


В треугольнике ABC проведены биссектриса AD и средняя линия A1C1. Прямые AD и A1C1 пересекаются в точке K. Докажите, что  2A1K = |b – c|.

ВверхВниз   Решение


Полиция задержала 50 человек, из которых 35 – преступники, которые говорят, что захотят, а 15 – свидетели, которые всегда говорят правду. Все задержанные знают, кто преступники. Какое наименьшее число человек достаточно выбрать, чтобы спросив потом у каждого, кто именно преступники, по ответам вычислить хотя бы одного преступника?

ВверхВниз   Решение


В Анчурии всего K законов и N министров. Вероятность того, что случайно взятый министр знает случайно выбранный закон, равна p. Однажды министры собрались на совет, чтобы написать Концепцию. Если хотя бы один министр знает закон, то этот закон будет учтён в Концепции, в противном случае этот закон в Концепции учтён не будет. Найдите:
  а) Вероятность того, что ровно M законов будут учтены в Концепции.
  б) Математическое ожидание числа учтённых законов.

ВверхВниз   Решение


Доказать, что  4343 + 1717  делится на 10.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]      



Задача 31236  (#06)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 6,7,8

На сколько нулей оканчивается число  9999 + 1?

Прислать комментарий     Решение

Задача 31237  (#07)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 6,7,8

Найти наименьшее натуральное N, дающее остаток 1 по модулю 2, 2 по модулю 3, ..., 7 по модулю 8.

Прислать комментарий     Решение

Задача 31238  (#08)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 6,7,8

Доказать, что если  a² + b²  делится на 7, то и ab делится на 7.

Прислать комментарий     Решение

Задача 31239  (#09)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Доказать, что  4323 + 2343  делится на 66.

Прислать комментарий     Решение

Задача 31240  (#10)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 6,7,8

Доказать, что  4343 + 1717  делится на 10.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .