ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что сумма расстояний от произвольной точки до трех вершин равнобедренной трапеции больше расстояния от этой точки до четвертой вершины.

Вниз   Решение


Существует ли такое натуральное x, что  x² + x + 1  делится на 1985?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42]      



Задача 31231  (#01)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 6,7,8

Существует ли такое натуральное x, что  x² + x + 1  делится на 1985?

Прислать комментарий     Решение

Задача 31232  (#02)

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 5 и 10 ]
Сложность: 2-
Классы: 6,7,8

Число x оканчивается на 5. Доказать, что x² оканчивается на 25.

Прислать комментарий     Решение

Задача 31233  (#03)

Темы:   [ Малая теорема Ферма ]
[ Периодичность и непериодичность ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Найти последнюю цифру числа  71988 + 91988.

Прислать комментарий     Решение

Задача 31234  (#04)

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 6,7,8

Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры.

Прислать комментарий     Решение

Задача 31235  (#05)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2
Классы: 6,7,8

Найти последнюю цифру числа  1·2 + 2·3 + ... + 999·1000.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .