|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Каждый зритель, купивший билет в первый ряд кинотеатра, занял одно из мест в первом ряду. Оказалось, что все места в первом ряду заняты, но каждый зритель сидит не на своём месте. Билетёр может менять местами соседей, если оба сидят не на своих местах. Всегда ли он может рассадить всех на свои места? По кругу расставлены нули и единицы (и те и другие присутствуют). Каждое число,
у которого два соседа одинаковы, заменяют на ноль, а остальные числа – на единицы, и такую операцию проделывают несколько раз. |
Страница: 1 2 >> [Всего задач: 8]
В квадрате 25×25 стоят числа 1 и –1. Вычислили все произведения этих чисел по строкам и по столбцам.
В вершинах n-угольника стоят числа 1 и –1. На каждой стороне написано произведение чисел на её концах. Оказалось, что сумма чисел на сторонах равна нулю. Доказать, что a) n чётно; б) n делится на 4.
По кругу расставлены нули и единицы (и те и другие присутствуют). Каждое число,
у которого два соседа одинаковы, заменяют на ноль, а остальные числа – на единицы, и такую операцию проделывают несколько раз.
Можно ли составить магический квадрат из первых 36 простых чисел?
Отличник Поликарп купил общую тетрадь объёмом 96 листов и пронумеровал все её страницы по порядку числами от 1 до 192. Двоечник Колька вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. В ответе у Кольки получилось 2002. Не ошибся ли он?
Страница: 1 2 >> [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|