|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Занятия:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В клетках таблицы 3×3 расставлены числа –1, 0, 1. Постройте параллелограмм по двум соседним сторонам и углу между ними.
Пусть многочлен P(x) = xn + an–1xn–1 + ... + a1x + a0  имеет корни  x1, x2, ..., xn,  то есть  P(x) = (x – x1)(x – x2)...(x – xn).  Рассмотрим многочлен В поход пошли 20 туристов. Самому старшему из них 35 лет, а самому младшему 20 лет. Верно ли, что среди туристов есть одногодки? Алгоритм приближенного вычисления
a0 = a > 0, an + 1 =
Докажите, что
Диагонали вписанного четырехугольника $ABCD$ пересекаются в точке $P$. Прямая, проходящая через точку $P$ и перпендикулярная $PD$, пересекает прямую $AD$ в точке $D_{1}$; аналогично определяется точка $A_{1}$. Докажите, что касательная, проведенная в точке $P$ к описанной окружности треугольника $D_{1}PA_{1}$, параллельна прямой $BC$. На клетчатой бумаге нарисован замкнутый путь (по линиям сетки). Доказать, что он имеет чётную длину (сторона клетки имеет длину 1). |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]
На клетчатой бумаге нарисован замкнутый путь (по линиям сетки). Доказать, что он имеет чётную длину (сторона клетки имеет длину 1).
В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?
Можно ли нарисовать девятизвенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев?
На доске 25×25 расставлены 25 шашек, причём их расположение симметрично относительно обеих главных диагоналей.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|