|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Неориентированный граф называется четно-нечетным, если найдутся две его вершины, между которыми существует пути как из четного, так и из нечетного числа ребер. Напишите программу, которая: a) определяет, является ли заданный граф четно-нечетным; б) В случае отрицательного ответа на пункт а) находит максимальное подмножество X вершин графа такое, что для любых двух вершин i и j из X выполняется следующее условие: все пути между i и j состоят из четного числа ребер. Входные данные Первая строка входного файла содержит число вершин графа N (1 ≤ N ≤ 100), а каждая последующая – пару чисел (i, j), означающих, что в графе присутствует ребро, соединяющее вершины с номерами i и j. Выходные данные Первая строка выходного файла должна содержать ответ на пункт А в форме YES/NO. В случае отрицательного ответа на пункт А вторая строка должна содержать количество вершин в множестве X, а третья – номера вершин из этого множества в порядке возрастания, записанные через пробел. Если вариантов решений несколько, то достаточно вывести любое из них. Пример входного файла 3 1 2 Пример выходного файла NO 2 2 3 Внутри окружности с центром O дана точка A. Найдите точку M окружности, для которой угол OMA максимален. а) p, p + 10, p + 14 – простые числа. Найдите p. б) p, 2p + 1, 4p + 1 – простые числа. Найдите p. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 56]
Найдите остаток от деления 31989 на 7.
Докажите, что 22225555 + 55552222 делится на 7.
Найдите последнюю цифру числа 777.
а) p, p + 10, p + 14 – простые числа. Найдите p. б) p, 2p + 1, 4p + 1 – простые числа. Найдите p.
p и 8p2 + 1 – простые числа. Найдите p.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 56] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|