ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Белухов Н.

Пусть $p$ и $q$ – взаимно простые натуральные числа. Лягушка прыгает по числовой прямой, начиная в точке $0$, каждый раз либо на $p$ вправо, либо на $q$ влево. Однажды лягушка вернулась в $0$. Докажите, что для любого натурального $d < p + q$ найдутся два числа, посещенные лягушкой и отличающиеся на $d$.

Вниз   Решение


Трапеция ABCD и параллелограмм MBDK расположены так, что стороны параллелограмма параллельны диагоналям трапеции (см. рис.). Докажите, что площадь серой части равна сумме площадей черных частей.

ВверхВниз   Решение


На блюде лежали 15 плюшек. Карлсон взял себе в три раза больше плюшек, чем Малыш, а собака Малыша Бимбо – в три раза меньше, чем Малыш. Сколько плюшек осталось на блюде?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 116863  (#6.1)

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2+
Классы: 5,6

Разрежьте данную фигуру на три одинаковые части.

Прислать комментарий     Решение

Задача 116864  (#6.2)

Темы:   [ Текстовые задачи (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 5,6

На блюде лежали 15 плюшек. Карлсон взял себе в три раза больше плюшек, чем Малыш, а собака Малыша Бимбо – в три раза меньше, чем Малыш. Сколько плюшек осталось на блюде?

Прислать комментарий     Решение

Задача 116865  (#6.3)

Темы:   [ Системы линейных уравнений ]
[ Периодичность и непериодичность ]
Сложность: 2+
Классы: 5,6

На доске записан ряд из чисел и звёздочек: 5, *, *, *, *, *, *, 8. Замените звёздочки числами так, чтобы сумма каждых трёх чисел, стоящих подряд, равнялась 20.

Прислать комментарий     Решение

Задача 116866  (#6.4)

Темы:   [ Наглядная геометрия в пространстве ]
[ Сечения, развертки и остовы (прочее) ]
Сложность: 4-
Классы: 5,6

Ребёнок поставил четыре одинаковых кубика так, что буквы на сторонах кубиков, обращённых к нему, образуют его имя (см. рисунок). Нарисуйте, как расположены остальные буквы на данной развёртке кубика и определите, как зовут ребёнка.

Прислать комментарий     Решение

Задача 116867  (#6.5)

Темы:   [ Математическая логика (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 5,6

На полянке собрались божьи коровки. Если у божьей коровки на спине шесть точек, то она всегда говорит правду, а если четыре точки – то она всегда лжёт, а других божьих коровок на полянке не было. Первая божья коровка сказала: "У каждой из нас одинаковое количество точек на спине". Вторая сказала: "У всех вместе на спинах 30 точек". – "Нет, у всех вместе 26 точек на спинах", – возразила третья. "Из этих троих ровно одна сказала правду", – заявила каждая из остальных божьих коровок. Сколько всего божьих коровок собралось на полянке?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .