ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Существует ли четырёхугольная пирамида, у которой две противоположные боковые грани перпендикулярны плоскости основания?

Вниз   Решение


Дан треугольник ABC. Найти геометрическое место таких точек M, что треугольники ABM и BCM – равнобедренные.

ВверхВниз   Решение


а) Архитектор хочет расположить четыре высотных здания так, что, гуляя по городу, можно увидеть их шпили в произвольном порядке (т. е. для любого набора номеров зданий i, j, k, l можно стоя в некоторой точке и поворачиваясь в направлении к пок или к противк часовой стрелки, увидеть сначала шпиль здания i, затем j, k, l). Удастся ли ему это сделать?
б) Тот же вопрос для пяти зданий.

ВверхВниз   Решение


Автор: Фольклор

На рисунке изображен график функции  у = kx + b .  Сравните |k| и |b|.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 116731  (#7.1.1)

Темы:   [ Многочлены (прочее) ]
[ Уравнения в целых числах ]
Сложность: 2
Классы: 7,8,9

Автор: Фольклор

Существуют ли два одночлена, произведение которых равно –12а4b², а сумма является одночленом с коэффициентом 1?

Прислать комментарий     Решение

Задача 116732  (#7.1.2)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
Сложность: 2+
Классы: 7,8,9

Автор: Фольклор

У двух равнобедренных треугольников равны основания и радиусы описанных окружностей. Обязательно ли эти треугольники равны?

Прислать комментарий     Решение

Задача 116733  (#7.1.3)

Темы:   [ Турниры и турнирные таблицы ]
[ Средние величины ]
Сложность: 3-
Классы: 7,8,9

Автор: Фольклор

Шахматист сыграл в турнире 20 партий и набрал 12,5 очков. На сколько партий больше он выиграл, чем проиграл?

Прислать комментарий     Решение

Задача 116739  (#7.3.3)

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

В коробке лежат 2011 белых и 2012 чёрных шаров. Наугад вытаскиваются два шара. Если они одного цвета, то их выкидывают и кладут в коробку чёрный шар. Если они разного цвета, то выкидывают чёрный, а белый кладут обратно. Процесс продолжается до тех пор, пока в коробке не останется один шар. Какого он цвета?

Прислать комментарий     Решение

Задача 116734  (#7.2.1)

Тема:   [ Графики и ГМТ на координатной плоскости ]
Сложность: 2
Классы: 7,8,9

Автор: Фольклор

На рисунке изображен график функции  у = kx + b .  Сравните |k| и |b|.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .