ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Из каждой вершины многоугольника опущены перпендикуляры на стороны, её не содержащие. Докажите, что хотя бы для одной вершины одно из оснований перпендикуляров лежит на самой стороне, а не на её продолжении.

Вниз   Решение


Автор: Пешнин А.

Докажите, что в остроугольном треугольнике расстояние от любой вершины до соответствующего центра вневписанной окружности меньше чем сумма двух наибольших сторон треугольника.

ВверхВниз   Решение


Hа плоскости даны две окружности C1 и C2 с центрами O1 и O2 и радиусами 2R и R соответственно (O1O2 > 3R). Hайдите геометрическое место центров тяжести треугольников, у которых одна вершина лежит на C1, а две другие — на C2.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 116202

Темы:   [ Теорема синусов ]
[ Построения (прочее) ]
Сложность: 2+
Классы: 10,11

Дан произвольный треугольник ABC. Постройте прямую, разбивающую его на два многоугольника, у которых равны радиусы описанных окружностей.

Прислать комментарий     Решение

Задача 116196

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

Диагонали вписанного четырехугольника ABCD пересекаются в точке K.
Докажите, что касательная в точке K к описанной окружности треугольника ABK, параллельна CD.

Прислать комментарий     Решение

Задача 116198

Темы:   [ Неравенства для элементов треугольника (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9

Hа сторонах AB, BC и AC треугольника ABC выбраны точки C', A' и B' соответственно так, что угол A'C'B' — прямой. Докажите, что отрезок A'B' длиннее диаметра вписанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 116203

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Тетраэдр (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Трехгранные и многогранные углы (прочее) ]
[ Теорема косинусов ]
Сложность: 3
Классы: 10,11

Шесть отрезков таковы, что из любых трех можно составить треугольник. Bерно ли, что из этих отрезков можно составить тетраэдр?

Прислать комментарий     Решение

Задача 116204

Темы:   [ Векторы помогают решить задачу ]
[ ГМТ (прочее) ]
Сложность: 3
Классы: 10,11

Hа плоскости даны две окружности C1 и C2 с центрами O1 и O2 и радиусами 2R и R соответственно (O1O2 > 3R). Hайдите геометрическое место центров тяжести треугольников, у которых одна вершина лежит на C1, а две другие — на C2.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .