ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Окружность обладает тем свойством, что внутри неё можно двигать правильный треугольник так, чтобы каждая вершина треугольника описывала эту окружность. Найти замкнутую несамопересекающуюся кривую, отличную от окружности, внутри которой также можно двигать правильный треугольник так, чтобы каждая его вершина описывала эту кривую.

Вниз   Решение


Петя и Вася живут в соседних домах (см. план на рисунке). Вася живет в четвёртом подъезде. Известно, что Пете, чтобы добежать до Васи кратчайшим путем (не обязательно идущим по сторонам клеток), безразлично, с какой стороны обегать свой дом. Определите, в каком подъезде живет Петя.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 111899  (#1)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Наибольшая или наименьшая длина ]
Сложность: 3
Классы: 6,7,8

Петя и Вася живут в соседних домах (см. план на рисунке). Вася живет в четвёртом подъезде. Известно, что Пете, чтобы добежать до Васи кратчайшим путем (не обязательно идущим по сторонам клеток), безразлично, с какой стороны обегать свой дом. Определите, в каком подъезде живет Петя.

Прислать комментарий     Решение

Задача 111900  (#2)

Темы:   [ Задачи на проценты и отношения ]
[ Обыкновенные дроби ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9

На каждом из двух огородов Дед посадил по одинаковому количеству репок. Если в огород заходит Внучка, то она выдергивает ровно ⅓ репок, имеющихся к этому моменту. Если заходит Жучка, то она выдергивает 1/7 репок, а если заходит Мышка, то она выдергивает только 1/12 репок. К концу недели на первом огороде осталось 7 репок, а на втором – 4. Заходила ли Жучка во второй огород?

Прислать комментарий     Решение

Задача 111901  (#3)

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 7,8,9

Автор: Шноль Д.Э.

У подводного царя служат осьминоги с шестью, семью или восемью ногами. Те, у кого 7 ног, всегда лгут, а у кого 6 или 8 ног, всегда говорят правду. Встретились четыре осьминога. Синий сказал: "Вместе у нас 28 ног", зеленый: "Вместе у нас 27 ног", желтый: "Вместе у нас 26 ног", красный: "Вместе у нас 25 ног". У кого сколько ног?
Прислать комментарий     Решение


Задача 111902  (#4)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Подсчет двумя способами ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 6,7,8,9

Скупой рыцарь хранит золотые монеты в 77 сундуках. Однажды, пересчитывая их, он заметил, что если открыть любые два сундука, то можно разложить лежащие в них монеты поровну по этим двум сундукам. Потом он заметил, что если открыть любые 3, или любые 4, ..., или любые 76 сундуков, то тоже можно так переложить лежащие в них монеты, что во всех открытых сундуках станет поровну монет. Тут ему почудился стук в дверь, и старый скряга не успел проверить, можно ли разложить все монеты поровну по всем 77 сундукам. Можно ли, не заглядывая в сундуки, дать точный ответ на этот вопрос?

Прислать комментарий     Решение

Задача 111903  (#5)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Разные задачи на разрезания ]
Сложность: 5
Классы: 6,7,8,9

Автор: Шноль Д.Э.

Начертите два четырехугольника с вершинами в узлах сетки, из которых можно сложить а) как треугольник, так и пятиугольник; б) и треугольник, и четырехугольник, и пятиугольник. Покажите, как это можно сделать.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .