|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В трапеции ABCD стороны BC и AD параллельны, M — точка пересечения биссектрис углов A и B, N — точка пересечения биссектрис углов C и D. Докажите, что 2MN = | AB + CD - BC - AD|. На рёбрах AB , BC и AD тетраэдра ABCD взяты точки K , N и M соответственно, причём AK:KB = BN:NC = 2:1 , AM:MD = 3:1 . Постройте сечение тетраэдра плоскостью, проходящей через точки K , M и N . В каком отношении эта плоскость делит ребро CD ? В драматическом театре им. Пушкина к юбилею Александра Сергеевича решили поставить оперу «Евгений Онегин». Артисты театра обладают красивыми, но не очень сильными голосами. По этой причине руководство театра дало указание приобрести радиомикрофоны. В начале и в конце спектакля все артисты находятся за кулисами. Артисты выходят на сцену и покидают ее через правую или левую кулису. Для того, чтобы петь на сцене, артист берет с собой один микрофон. Артист может выходить на сцену с микрофоном (одним), даже если ему не надо петь в этом выходе. Взяв микрофон, артист не может оставить его на сцене или передать другому артисту. При уходе артиста за кулисы микрофон остается за соответствующей кулисой до тех пор, пока его снова не возьмет какой-либо артист, выходящий на сцену. Очередность выходов артистов на сцену и их уходов за кулисы указывается в режиссерском плане. Кроме того, в этом плане указывается, через какие кулисы выходит (или уходит) артист и поет ли он в данном выходе. Напишите программу, которая по заданному режиссерскому плану
определяет минимальное количество требуемых для постановки оперы
микрофонов, их начальное размещение по кулисам и для каждого выхода
указывает, брать или не брать микрофон.
В тетраэдре ABCD из вершины A опустили перпендикуляры AB' , AC' , AD' на плоскости, делящие двугранные углы при ребрах CD , BD , BC пополам. Докажите, что плоскость (B'C'D') параллельна плоскости (BCD) . По окружности отметили 40 красных, 30 синих и 20 зеленых точек. На каждой дуге между соседними красной и синей точками поставили цифру 1, на каждой дуге между соседними красной и зеленой – цифру 2, а на каждой дуге между соседними синей и зеленой – цифру 3. (На дугах между одноцветными точками поставили 0.) Найдите максимальную возможную сумму поставленных чисел. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]
Вписанная в треугольник ABC окружность ω касается сторонAB и AC в точках D и E соответственно. Пусть P – произвольная точка на большей дуге DE окружности ω, F – точка, симметричная точке A относительно прямой DP, M – середина отрезка DE. Докажите, что угол FMP – прямой.
Даны два квадратных трёхчлена, имеющих корни. Известно, что если в них поменять местами коэффициенты при x², то получатся трёхчлены, не имеющие корней. Докажите, что если в исходных трёхчленах поменять местами коэффициенты при x, то получатся трёхчлены, имеющие корни.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48] |
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|