|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Как связано разложение рационального числа в цепную дробь с алгоритмом Евклида? В бесконечной последовательности a1, a2, a3, ... число a1 равно 1,
а каждое следующее число an строится из предыдущего an–1 по правилу: если у числа n наибольший нечётный делитель имеет остаток 1 от деления на 4, то an = an–1 + 1, если же остаток равен 3, то an = an–1 – 1. Докажите, что в этой последовательности Существуют ли такие простые числа p1, p2, ..., p2007, что Дан описанный четырёхугольник ABCD, P, Q и R – основания перпендикуляров, опущенных из вершины D на прямые BC, CA, AB соответственно. Докажите, что биссектрисы углов ABC, ADC и диагональ AC пересекаются в одной точке тогда и только тогда, когда |PQ| = |QR|. |
Страница: 1 2 3 4 >> [Всего задач: 16]
Дан описанный четырёхугольник ABCD, P, Q и R – основания перпендикуляров, опущенных из вершины D на прямые BC, CA, AB соответственно. Докажите, что биссектрисы углов ABC, ADC и диагональ AC пересекаются в одной точке тогда и только тогда, когда |PQ| = |QR|.
Докажите, что AP ≥ AI, причём равенство выполняется тогда и только тогда, когда P совпадает с I.
Найдите все такие пары (x, y) целых чисел, что 1 + 2x + 22x+1 = y².
Пусть P(x) – многочлен степени n > 1 с целыми коэффициентами, k – произвольное натуральное число. Рассмотрим многочлен
a и b – натуральные числа. Покажите, что если 4ab – 1 делит (4a² – 1)², то a = b.
Страница: 1 2 3 4 >> [Всего задач: 16] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|