|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На рисунке изображена схема трассы для картинга. Старт и финиш в точке A, причём картингист по дороге может сколько угодно раз заезжать в точку A и возвращаться на круг. На путь от A до B или обратно юный гонщик Юра тратит минуту. На путь по кольцу Юра также тратит минуту. По кольцу можно ездить только против часовой стрелки (стрелки показывают возможные направление движения). Юра не поворачивает назад на полпути и не останавливается. Длительность заезда 10 минут. Найдите число возможных различных маршрутов (последовательностей прохождения участков). Три натуральных числа таковы, что произведение каждых двух из них делится на сумму этих двух чисел. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
В ячейки куба 11×11×11 поставлены по одному числа 1, 2, ..., 1331. Из одного углового кубика в противоположный угловой отправляются два червяка. Каждый из них может проползать в соседний по грани кубик, при этом первый может проползать, если число в соседнем кубике отличается на 8, второй – если отличается на 9. Существует ли такая расстановка чисел, что оба червяка смогут добраться до противоположного углового кубика?
Три натуральных числа таковы, что произведение каждых двух из них делится на сумму этих двух чисел.
В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?
Положительные числа x, y, z таковы, что модуль разности любых двух из них меньше 2.
Внутри параллелограмма ABCD выбрана точка M, а внутри треугольника AMD точка N, причём ∠MNA + ∠ MCB = ∠MND + ∠MBC = 180°.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|