ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Состоятельный Крот подсчитал, что своими запасами зерна он может целиком заполнить либо 20 больших мешков зерна, либо 32 маленьких мешка. На месяц зимовки ему необходимо 7 больших мешков зерна. Крот может обменять у других кротов 2 больших мешка на 3 маленьких. Сможет ли Крот перезимовать три месяца или ему нужны дополнительные запасы?

Вниз   Решение


Может ли сумма тангенсов углов одного треугольника равняться сумме тангенсов углов другого, если один из этих треугольников остроугольный, а другой тупоугольный?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 105209

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Исследование квадратного трехчлена ]
[ Перенос помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

Один из двух приведённых квадратных трёхчленов имеет два корня, меньших 1000, другой – два корня, больших 1000. Может ли сумма этих трёхчленов иметь один корень меньший 1000, а другой – больший 1000?

Прислать комментарий     Решение

Задача 105210

Темы:   [ Тангенсы и котангенсы углов треугольника ]
[ Применение тригонометрических формул (геометрия) ]
[ Неравенства с углами ]
Сложность: 4-
Классы: 9,10,11

Может ли сумма тангенсов углов одного треугольника равняться сумме тангенсов углов другого, если один из этих треугольников остроугольный, а другой тупоугольный?
Прислать комментарий     Решение


Задача 105213

Темы:   [ Простые числа и их свойства ]
[ Системы линейных уравнений ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Натуральное число n таково, что  3n + 1  и  10n + 1  являются квадратами натуральных чисел. Докажите, что число  29n + 11  – составное.

Прислать комментарий     Решение

Задача 105211

Темы:   [ Замощения костями домино и плитками ]
[ Развертка помогает решить задачу ]
[ Прямоугольный тетраэдр ]
[ Движение помогает решить задачу ]
[ Метод координат в пространстве (прочее) ]
Сложность: 4+
Классы: 10,11

Можно ли замостить все пространство равными тетраэдрами, все грани которых — прямоугольные треугольники?
Прислать комментарий     Решение


Задача 105212

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
[ Процессы и операции ]
Сложность: 5
Классы: 9,10,11

В коробке лежат карточки, занумерованные натуральными числами от 1 до 2006. На карточке с номером 2006 лежит карточка с номером 2005 и т. д. до 1. За ход разрешается взять одну верхнюю карточку (из любой коробки) и переложить ее либо на дно пустой коробки, либо на карточку с номером на единицу больше. Сколько пустых коробок нужно для того, чтобы переложить все карточки в другую коробку?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .