|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Верно ли, что любое положительное чётное число можно представить в виде произведения целых чисел, сумма которых равна нулю? В остроугольном треугольнике ABC проведены высоты AA1, BB1 и CC1. Докажите, что если A1B1 || AB и B1C1 || BC, то A1C1 || AC. Точки A1, B1, C1 лежат соответственно на сторонах BC, AC, AB треугольника ABC, причём отрезки AA1, BB1, CC1 пересекаются в точке K. На двух клетках шахматной доски стоят чёрная и белая фишки. За один ход можно передвинуть любую из них на соседнюю по вертикали или горизонтали клетку (две фишки не могут стоять на одной клетке). Могут ли в результате таких ходов встретиться все возможные варианты расположения этих двух фишек, причём ровно по одному разу? |
Страница: << 1 2 3 4 [Всего задач: 16]
На двух клетках шахматной доски стоят чёрная и белая фишки. За один ход можно передвинуть любую из них на соседнюю по вертикали или горизонтали клетку (две фишки не могут стоять на одной клетке). Могут ли в результате таких ходов встретиться все возможные варианты расположения этих двух фишек, причём ровно по одному разу?
Страница: << 1 2 3 4 [Всего задач: 16] |
||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|