ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01.

Вниз   Решение


В семье шестеро детей. Пятеро из них соответственно на 2, 6, 8, 12 и 14 лет старше младшего, причём возраст каждого ребенка – простое число.
Сколько лет младшему?

ВверхВниз   Решение


На доске нарисованы три четырёхугольника. Петя сказал: "На доске нарисованы по крайней мере две трапеции". Вася сказал: "На доске нарисованы по крайней мере два прямоугольника". Коля сказал: "На доске нарисованы по крайней мере два ромба". Известно, что один из мальчиков сказал неправду, а двое других – правду. Докажите, что среди нарисованных на доске четырёхугольников есть квадрат.

ВверхВниз   Решение


Без ореха (от дупла до орешника) белка бежит со скоростью 4 м/с, а с орехом (от орешника до дупла) – со скоростью 2 м/с. На путь от дупла до орешника и обратно она тратит 54 секунды. Найдите расстояние от дупла до орешника.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 104069  (#1)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

В примере на сложение двух чисел первое слагаемое меньше суммы на 2000, а сумма больше второго слагаемого на 6.
Восстановите пример.

Прислать комментарий     Решение

Задача 104070  (#2)

Темы:   [ Замощения костями домино и плитками ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Геометрия на клетчатой бумаге ]
Сложность: 2+
Классы: 5,6,7

Составьте квадрат, используя ровно четыре из пяти изображенных ниже фигур. Каждую из четырех выбранных Вами фигур можно использовать только один раз.

Прислать комментарий     Решение

Задача 104071  (#3)

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Задачи на движение ]
Сложность: 2+
Классы: 5,6,7,8

Без ореха (от дупла до орешника) белка бежит со скоростью 4 м/с, а с орехом (от орешника до дупла) – со скоростью 2 м/с. На путь от дупла до орешника и обратно она тратит 54 секунды. Найдите расстояние от дупла до орешника.

Прислать комментарий     Решение

Задача 104072  (#4)

Тема:   [ Математическая логика (прочее) ]
Сложность: 2-
Классы: 4,5,6,7

В день рождения дяди Федора почтальон Печкин хочет выяснить, сколько тому лет. Шарик говорит, что дяде Федору больше 11 лет, а кот Матроскин утверждает, что больше 10 лет. Сколько лет дяде Федору, если известно, что ровно один из них ошибся? Ответ обоснуйте.
Прислать комментарий     Решение


Задача 104073  (#5)

Темы:   [ Текстовые задачи (прочее) ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2+
Классы: 5,6,7,8

В забеге от Воробьёвых гор до Красной площади приняли участие три спортсмена. Сначала стартовал Гриша, затем – Саша, и последней – Лена. После финиша выяснилось, что во время забега Гриша обгонял других 10 раз, Лена – 6 раз, Саша – 4 раза, причём все трое ни разу не оказывались в одной точке одновременно. В каком порядке финишировали спортсмены, если известно, что они пришли к финишу в разное время?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .