ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дан равносторонний $ \Delta$ABC. На сторонах AB и BC взяты точки D и E так, что AE = CD. Найти геометрическое место точек пересечения отрезков AE и CD.

Вниз   Решение


Во входном файле записано равенство вида A = B, где A и B – это выражения, содержащие сколь угодно длинные целые числа и знаки операций +, - (бинарный и унарный) и *. Выражения не содержат скобок. Требуется проверить выполнение заданного равенства и вывести в выходной файл результат проверки в форме «Да, выполняется» или «Нет, не выполняется».
Длина входного файла данных не превосходит 60 килобайт. Числа и знаки операций в выражении могут разделяться пробелами и/или символами перевода строки.

Пример входного файла

2
                * 43 = 86

Пример выходного файла

Да, выполняется

ВверхВниз   Решение


Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 103960  (#1)

 [Сбор орехов]
Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 6,7,8

Доказать, что если 21 человек собрали 200 орехов, то есть два человека, собравшие поровну орехов.
Прислать комментарий     Решение


Задача 103961  (#2)

 [Расставьте числа в таблице]
Темы:   [ Принцип Дирихле (прочее) ]
[ Числовые таблицы и их свойства ]
Сложность: 2+
Классы: 6,7,8

Можно ли в таблице 6×6 расставить числа 0, 1 и -1 так, чтобы все суммы по вертикалям, горизонталям и двум диагоналям были различны?
Прислать комментарий     Решение


Задача 103962  (#3)

 [Задачи на олимпиаде]
Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 6,7,8

10 школьников на олимпиаде решили 35 задач, причем известно, что среди них есть школьники, решившие ровно одну задачу, школьники, решившие ровно две задачи и школьники, решившие ровно три задачи. Докажите, что есть школьник, решивший не менее пяти задач.
Прислать комментарий     Решение


Задача 103963  (#4)

 [Делимость на 10]
Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 6,7,8

Доказать, что среди любых одиннадцати целых чисел найдутся два, разность между которыми делится на 10.
Прислать комментарий     Решение


Задача 103964  (#5)

 [Делимость на n]
Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .