|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Два выпуклых многоугольника A1A2...An и B1B2...Bn (n ≥ 4) таковы, что каждая сторона первого больше соответствующей стороны второго. Высоты треугольника ABC пересекаются в точке H. а) Докажите, что треугольники ABC, HBC, AHC и ABH имеют общую окружность девяти точек. б) Докажите, что прямые Эйлера треугольников ABC, HBC, AHC и ABH пересекаются в одной точке. в) Докажите, что центры описанных окружностей треугольников ABC, HBC, AHC и ABH образуют четырехугольник, симметричный четырехугольнику HABC. В вершинах куба ABCDEFGH расставлены натуральные числа так, что числа в соседних (по ребру) вершинах отличаются не более чем на единицу. Докажите, что обязательно найдутся две диаметрально противоположные вершины, числа в которых отличаются не более чем на единицу. (Пары диаметрально противоположных вершин куба: A и G, B и H, C и E, D и F.)
|
Страница: 1 [Всего задач: 5]
В квадрате 7×7 клеток закрасьте некоторые клетки так, чтобы в каждой строке и в каждом столбце оказалось ровно по три закрашенных клетки.
Карлсон написал дробь 10/97. Малыш может:
Дан прямоугольный треугольник (см. рисунок). Приложите к нему какой-нибудь треугольник (эти треугольники должны иметь общую сторону, но не должны перекрываться даже частично) так, чтобы получился треугольник с двумя равными сторонами.
Может ли произведение двух последовательных натуральных чисел равняться произведению двух последовательных чётных чисел?
(Пары диаметрально противоположных вершин куба: A и G, B и H, C и E, D и F.)
Страница: 1 [Всего задач: 5] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|