|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан квадратный трёхчлен f(x) = x² + ax + b. Уравнение f(f(x)) = 0 имеет четыре различных действительных корня, сумма двух из которых равна –1. Докажите, что b ≤ – ¼. Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон. Прямоугольник m×n разрезан на уголки: На высоте AH треугольника ABC взята точка M. Докажите, что AB² – AC² = MB² – MC². Три ёжика делили три кусочка сыра массами 5 г, 8 г и 11 г. Лиса стала им помогать. Она может от любых двух кусочков одновременно отрезать и съесть по 1 г сыра. Сможет ли лиса оставить ёжикам равные кусочки сыра?
|
Страница: 1 2 >> [Всего задач: 10]
На глобусе проведены 17 параллелей и 24 меридиана. На сколько частей разделена поверхность глобуса?
а) Приведите пример расположения бензоколонок (с указанием расстояний между ними), удовлетворяющий условию задачи. б) Найдите расстояние между B и C (укажите все возможности).
Страница: 1 2 >> [Всего задач: 10] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|