|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Имеются одна красная и k (k > 1) синих ячеек, а также колода из 2n карт, занумерованных числами от 1 до 2n. Первоначально вся колода лежит в произвольном порядке в красной ячейке. Из любой ячейки можно взять верхнюю карту и переложить её либо в пустую ячейку, либо поверх карты с номером, большим на единицу. При каком наибольшем n можно такими операциями переложить всю колоду в одну из синих ячеек? На круглом столе через равные промежутки лежат пирожные. Игорь ходит вокруг стола и съедает каждое третье встреченное пирожное (каждое пирожное может быть встречено несколько раз). Когда на столе не осталось пирожных, он заметил, что последним взял пирожное, которое встретил первым, и прошёл ровно семь кругов вокруг стола. Сколько было пирожных? Если у числа x подсчитать сумму цифр и с полученным числом повторить это ещё два раза, то получится ещё три числа. Найдите самое маленькое x, для которого все четыре числа различны, а последнее из них равно 2.
|
Страница: << 1 2 3 >> [Всего задач: 14]
Можно ли это сделать так, чтобы все отдельные кубики оказались в серединах граней большого куба?
Зная, что число 1993 простое, выясните, существуют ли такие натуральные числа x и y, что
1993 = 1 + 8 : (1 + 8 : (1 - 8 : (1 + 4 : (1 - 4 : (1 - 8 : x))))).
Страница: << 1 2 3 >> [Всего задач: 14] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|