ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

В остроугольном треугольнике соединены основания высот. Оказалось, что в полученном треугольнике две стороны параллельны сторонам исходного треугольника. Докажите, что третья сторона также параллельна одной из сторон исходного треугольника.

Вниз   Решение


Два маляра красят забор, огораживающий дачные участки. Они приходят через день и красят по одному участку (участков 100 штук) в красный или зелёный цвет. Первый маляр дальтоник и путает цвета, он помнит, что и в какой цвет он сам покрасил, и видит, что покрасил второй маляр, но не знает, в какой цвет. Первый маляр добивается того, чтобы в наибольшем числе мест зелёный участок граничил с красным. Какого наибольшего числа переходов он может добиться (как бы ни действовал второй маляр)?

Замечание. Считается, что дачные участки расположены в одну линию.

ВверхВниз   Решение


Автор: Фольклор

Найдите все пары натуральных чисел  (а, b),  для которых выполняется равенство  НОК(а, b) – НОД(а, b) = ab/5.

ВверхВниз   Решение


Вася написал на листке бумаги записку, сложил её вчетверо, надписал сверху "МАМЕ" (см. фото). Затем он развернул записку, дописал ещё кое-что, опять сложил записку по линиям сгиба случайным образом (не обязательно, как раньше) и оставил на столе, положив случайной стороной вверх. Найдите вероятность того, что надпись "МАМЕ" по-прежнему сверху.

ВверхВниз   Решение


Существует ли четырёхугольная пирамида, у которой две противоположные боковые грани перпендикулярны плоскости основания?

ВверхВниз   Решение


Автор: Фольклор

Решите уравнение:   (x + 2010)(x + 2011)(x + 2012) = (x + 2011)(x + 2012)(x + 2013).

ВверхВниз   Решение


Автор: Ботин Д.А.

Как из семи ''уголков'', каждый из которых склеен из трёх кубиков 1×1×1, и шести отдельных кубиков 1×1×1 составить большой куб 3×3×3?

Можно ли это сделать так, чтобы все отдельные кубики оказались в серединах граней большого куба?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 103760  (#1)

Темы:   [ Последовательности (прочее) ]
[ Симметрия и инволютивные преобразования ]
[ Ребусы ]
Сложность: 2+
Классы: 6

Инопланетянин со звезды Тау Кита, прилетев на Землю в понедельник, воскликнул: ''А!''. Во вторник он воскликнул: ''АУ!'', в среду — ''АУУА!'', в четверг — ''АУУАУААУ!''. Что он воскликнет в субботу?

Прислать комментарий     Решение


Задача 103761  (#2)

Темы:   [ Задачи на работу ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 6

Автор: Ботин Д.А.

Мосметрострой нанял двух землекопов для рытья туннеля. Один из них может за час прокопать вдвое больше, чем другой, а платят по договору каждому одинаково за каждый час работы. Что обойдётся дешевле – совместная работа землекопов с двух сторон до встречи или поочерёдное рытьё половины туннеля каждым из землекопов?

Прислать комментарий     Решение

Задача 103762  (#3)

Темы:   [ Наглядная геометрия в пространстве ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3-
Классы: 7

Автор: Ботин Д.А.

Как из семи ''уголков'', каждый из которых склеен из трёх кубиков 1×1×1, и шести отдельных кубиков 1×1×1 составить большой куб 3×3×3?

Можно ли это сделать так, чтобы все отдельные кубики оказались в серединах граней большого куба?

Прислать комментарий     Решение


Задача 103763  (#4)

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 7

Если у числа x подсчитать сумму цифр и с полученным числом повторить это ещё два раза, то получится ещё три числа. Найдите самое маленькое x, для которого все четыре числа различны, а последнее из них равно 2.

Прислать комментарий     Решение


Задача 103764  (#5)

Тема:   [ Отношение порядка ]
Сложность: 2
Классы: 6

Автор: Иванова Е.

Дядя Фёдор, кот Матроскин, Шарик и почтальон Печкин сидят на скамейке. Если Шарик, сидящий справа от всех, сядет между дядей Фёдором и котом, то кот станет крайним слева. В каком порядке они сидят?

Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .