|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На плоскости проведены три прямые, образующие остроугольный неравнобедренный треугольник. Федя, у которого есть циркуль и линейка, хочет провести все высоты этого треугольника. Ваня с ластиком пытается ему помешать. За ход Федя проводит либо прямую через две отмеченные точки, либо окружность с центром в отмеченной точке, проходящую через другую отмеченную точку. После этого Федя отмечает любое количество точек (точки пересечения проведенных линий, случайные точки на проведенных линиях и случайные точки плоскости). Ваня за ход стирает не более трех отмеченных точек. (Федя не может использовать стертые точки в своих построениях, пока не отметит их снова). Ходят по очереди, начинает Федя. Изначально никакие точки плоскости не отмечены. Может ли Федя провести высоты? |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 69]
Решите уравнение
Существует ли прямоугольный треугольник, у которого длины двух сторон – целые числа, а длина третьей стороны равна
СН – высота остроугольного треугольника АВС, О – центр его описанной окружности. Точка Т – проекция вершины С на прямую АО.
Дано 100 целых чисел. Из первого числа вычли сумму цифр второго числа, из второго вычли сумму цифр третьего числа, и так далее, наконец, из 100-го числа вычли сумму цифр первого числа. Могут ли эти разности оказаться соответственно равными 1, 2, ..., 100 в каком-то порядке?
Решите систему уравнений:
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 69] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|