ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Известно, что в кадр фотоаппарата, расположенного в точке O, не могут попасть предметы A и B такие, что угол AOB больше 179o. На плоскости поставлено 1000 таких фотоаппаратов. Одновременно каждым фотоаппаратом делают по одному снимку. Доказать, что найдётся снимок, на котором сфотографировано не больше 998 фотоаппаратов.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 56684

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 2
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности с центром O. Докажите, что если из точки M отрезок AO виден под углом  90o, то отрезки OB и OC видны из нее под равными углами.
Прислать комментарий     Решение


Задача 56685

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности с центром O. Через точку X отрезка BC проведена прямая KL, перпендикулярная XO (точки K и L лежат на прямых AB и AC). Докажите, что KX = XL.
Прислать комментарий     Решение


Задача 56686

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

На продолжении хорды KL окружности с центром O взята точка A, и из нее проведены касательные AP и AQM — середина отрезка PQ. Докажите, что  $ \angle$MKO = $ \angle$MLO.
Прислать комментарий     Решение


Задача 56689

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

Даны окружность S и прямая l, не имеющие общих точек. Из точки P, движущейся по прямой l, проводятся касательные PA и PB к окружности S. Докажите, что все хорды AB имеют общую точку.



Прислать комментарий     Решение

Задача 56687

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 5
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности и секущая, пересекающая окружность в точках D и EM — середина отрезка BC. Докажите, что  BM2 = DM . ME и угол DME в два раза больше угла DBE или угла DCE; кроме того,  $ \angle$BEM = $ \angle$DEC.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .