ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Император пригласил на праздник 2015 волшебников, некоторые из которых добрые, а остальные злые. Добрый волшебник всегда говорит правду, а злой может говорить что угодно. При этом волшебники знают, кто добрый и кто злой, а император нет. На празднике император задаёт каждому волшебнику (в каком хочет порядке) по вопросу, на которые можно ответить "да" или "нет". Опросив всех волшебников, император изгоняет одного. Изгнанный волшебник выходит в заколдованную дверь, и император узнаёт, добрый он был или злой. Затем император вновь задает каждому из оставшихся волшебников по вопросу, вновь одного изгоняет, и так далее, пока император не решит остановиться (он может это сделать после любого вопроса). Докажите, что император может изгнать всех злых волшебников, удалив при этом не более одного доброго.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 79565

Тема:   [ Средние величины ]
Сложность: 2+
Классы: 8

Докажите, что если  0 < a1 < a2 < ... < a8 < a9,  то   < 3.

Прислать комментарий     Решение

Задача 79570

Темы:   [ Степень вершины ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9

В компании из семи мальчиков каждый имеет среди остальных не менее трёх братьев. Докажите, что все семеро – братья.

Прислать комментарий     Решение

Задача 79576

Темы:   [ Уравнения в целых числах ]
[ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 9,10

Найдите все простые числа р, q, r, удовлетворяющие равенству  pq + qp = r.

Прислать комментарий     Решение

Задача 79571

Темы:   [ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9

Докажите, что из 53 различных натуральных чисел, не превосходящих в сумме 1990, всегда можно выбрать 2 числа, составляющих в сумме 53.
Прислать комментарий     Решение


Задача 79580

Темы:   [ Замена переменных ]
[ Тригонометрия (прочее) ]
[ Геометрические интерпретации в алгебре ]
Сложность: 3+
Классы: 10,11

Найдите наибольшее значение выражения

x$\displaystyle \sqrt{1-y^2}$ + y$\displaystyle \sqrt{1-x^2}$.
Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .