ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 [Всего задач: 16]      



Задача 76515

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 9,10,11

Некоторые из чисел $a_1,a_2,\dots a_n$ равны +1, остальные равны -1. Доказать, что $$\begin{array}{l} 2\sin\left ( a_1+\frac{a_1a_2}{2}+\frac{a_1a_2a_3}{4}+\dots +\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}\right )\frac{\pi}{4}=\\ \qquad {} =a_1\sqrt{2+a_2\sqrt{2+a_3\sqrt{2+\dots +a_n\sqrt{2}}}}. \end{array} $$ В частности, при $a_1=a_2=\dots =a_n=1$ имеем: $$\begin{array}{l} 2\sin\left ( 1+\frac{1}{2}+\frac{1}{4}+\dots +\frac{1}{2^{n-1}}\right ) \frac{\pi}{4}=2\cos\frac{\pi}{2^{n+1}}=\\ \qquad {} =\sqrt{2+\sqrt{2+\dots +\sqrt{2}}}. \end{array} $$
Прислать комментарий     Решение


Страница: << 1 2 3 4 [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .