ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Длина пути - 2

(Такая же задача, как длина пути, но путь может не существовать).

В неориентированном графе требуется найти длину минимального пути между
двумя вершинами.

Входные данные
Во входном файле записано сначала число N - количество вершин в графе
(1<=N<=100). Затем записана матрица смежности (0 обозначает отсутствие ребра,
1 - наличие ребра). Затем записаны номера двух вершин - начальной и конечной.

Выходные данные
В выходной файл выведите одно число - длину пути (количество ребер, которые
нужно пройти).
Если пути не существует, выведите одно число -1.

Пример входного файла
5
0 1 0 0 1
1 0 1 0 0
0 1 0 0 0
0 0 0 0 0
1 0 0 0 0
4 5

Пример выходного файла
-1

Вниз   Решение


Треугольник
На плоскости даны N точек. Никакие две точки не совпадают,
никакие три не лежат на одной прямой. Найдите треугольник с вершинами
в этих точках, имеющий наименьший возможный периметр.

Входные данные
Во входном файле INPUT.TXT записано сначала число N - количество
точек (3<=N<=50), а затем N пар вещественных чисел, задающих координаты точек.

Выходные данные
В выходной файл выведите три числа - номера точек,
которые должны быть вершинами треугольника, чтобы его периметр был
минимален. Если решений несколько выведите любое из них.

Примечание
Если у вас есть две точки, и координаты одной из них X1,Y1,
а другой X2,Y2, то расстояние R между ними можно вычислить по формуле:
R:=sqrt((X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2));
Здесь R должна быть переменной вещественного типа (например, real),
а sqrt - стандартная функция, вычисляющая квадратный корень.

Пример файла INPUT.TXT	
5
0 0
1.3 0
-2 0.1
1 0
10 10	

Пример файла OUTPUT.TXT		
1 2 4		

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 110]      



Задача 60335  (#02.001)

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 6,7,8

  а) В Стране Чудес есть три города A, B и C. Из города A в город B ведет 6 дорог, а из города B в город C – 4 дороги.
Сколькими cпособами можно проехать от A до C?
  б) В Стране Чудес построили еще один город D и несколько новых дорог – две из A в D и две из D в C.
Сколькими способами можно теперь добраться из города A в город C?

Прислать комментарий     Решение

Задача 60336  (#02.002)

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 2
Классы: 6,7,8

Cколько существует различных семизначных телефонных номеров (cчитается, что номер начинаться с нуля не может)?

Прислать комментарий     Решение

Задача 60337  (#02.003)

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 6,7,8

Номер автомашины состоит из трёх букв русского алфавита (используется 30 букв) и трёх цифр: сначала идет буква, затем три цифры, а затем еще две буквы. Сколько существует различных номеров автомашин?

Прислать комментарий     Решение

Задача 60338  (#02.004)

Тема:   [ Подсчет двумя способами ]
Сложность: 3-
Классы: 7,8

В некоторой школе каждый школьник знаком с 32 школьницами, а каждая школьница – с 29 школьниками. Кого в школе больше: школьников или школьниц и во сколько раз?

Прислать комментарий     Решение

Задача 60339  (#02.005)

Темы:   [ Правило произведения ]
[ Задачи с ограничениями ]
Сложность: 2+
Классы: 7,8

В языке одного древнего племени было 6 гласных и 8 согласных, причём при составлении слов гласные и согласные непременно чередовались. Сколько слов из девяти букв могло быть в этом языке?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .