|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Классы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Петя придумал 1004 приведённых квадратных трёхчлена f1, ..., f1004, среди корней которых встречаются все целые числа от 0 до 2007. Вася рассматривает всевозможные уравнения fi = fj (i ≠ j), и за каждый найденный у них корень Петя платит Васе по рублю. Каков наименьший возможный доход Васи? В Думе 1600 депутатов, которые образовали 16000 комитетов по 80 человек в каждом. |
Страница: 1 2 3 >> [Всего задач: 12]
В треугольнике ABC биссектриса AK перпендикулярна медиане CL.
Диагонали вписанного четырёхугольника ABCD пересекаются в точке O. Описанные окружности треугольников AOB и COD пересекаются в точке M на стороне AD. Докажите, что точка O – центр вписанной окружности треугольника BMC.
Циркулем и линейкой разбейте данный треугольник на два меньших треугольника с одинаковой суммой квадратов сторон.
Внутри угла AOD проведены лучи OB и OC, причём ∠AOB = ∠COD. В углы AOB и COD вписаны непересекающиеся окружности.
Биссектрисы AA1 и CC1 прямоугольного треугольника ABC (∠B = 90°) пересекаются в точке I. Прямая, проходящая через точку C1 и перпендикулярная прямой AA1, пересекает прямую, проходящую через A1 и перпендикулярную CC1, в точке K. Докажите, что середина отрезка KI лежит на отрезке AC.
Страница: 1 2 3 >> [Всего задач: 12] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|