ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Первоначально даны четыре одинаковых прямоугольных треугольника. Каждым ходом один из имеющихся треугольников разрезается по высоте (выходящей из прямого угла) на два других. Докажите, что после любого количества ходов среди треугольников найдутся два одинаковых.

Вниз   Решение


Ненулевые числа a и b удовлетворяют равенству  a²b²(a²b² + 4) = 2(a6 + b6).  Докажите, что хотя бы одно из них иррационально.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 32136  (#1)

Темы:   [ Подсчет двумя способами ]
[ Шестиугольники ]
Сложность: 2+
Классы: 7,8,9

На сторонах шестиугольника было записано шесть чисел, а в каждой вершине – число, равное сумме двух чисел на смежных с ней сторонах. Затем все числа на сторонах и одно число в вершине стерли. Можно ли восстановить число, стоявшее в вершине?

Прислать комментарий     Решение

Задача 32137  (#2)

Тема:   [ Средняя линия треугольника ]
Сложность: 3+
Классы: 7,8,9

Вершины A, B, C треугольника соединены с точками A1, B1, C1, лежащими на противоположных сторонах (не в вершинах).
Могут ли середины отрезков AA1, BB1, CC1 лежать на одной прямой?

Прислать комментарий     Решение

Задача 98187  (#3)

Темы:   [ Теория алгоритмов (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9

Автор: Вялый М.Н.

Первоначально на доске написано натуральное число A. Разрешается прибавить к нему один из его делителей, отличных от него самого и единицы. С полученным числом разрешается проделать аналогичную операцию, и т. д. Докажите, что из числа  A = 4  можно с помощью таких операций прийти к любому наперёд заданному составному числу.

Прислать комментарий     Решение

Задача 98188  (#4)

Темы:   [ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
[ Отношение порядка ]
Сложность: 3+
Классы: 6,7,8

Автор: Рубин А.

Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .