Страница:
<< 1 2 [Всего задач: 9]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На землю положили квадратную раму, в центре квадрата установили вертикальный шест. Когда на эту конструкцию сверху натянули ткань, получилась маленькая палатка. Если положить рядом вплотную две таких же рамы, в центре каждой поставить вертикальный шест той же длины и натянуть сверху ткань, получится большая палатка. На маленькую палатку ушло 4 квадратных метра ткани. А сколько ткани потребуется для большой палатки?
|
|
Сложность: 3+ Классы: 6,7,8,9
|
В параллели 7-х классов 100 учеников, некоторые из которых дружат друг с другом. 1 сентября они организовали несколько клубов, каждый из которых основали три ученика (у каждого клуба свои). Дальше каждый день в каждый клуб вступали те ученики, кто дружил хотя бы с тремя членами клуба. К 19 февраля в клубе «Гепарды» состояли все ученики параллели. Могло ли получиться так, что в клубе «Черепахи» в этот же день состояло ровно 50 учеников?
|
|
Сложность: 4- Классы: 8,9,10
|
На рисунке изображена снежинка, симметричная относительно поворота вокруг точки O на 60° (при этом повороте каждый луч снежинки переходит в другой луч) и отражения относительно прямой OX. Найдите отношение длин отрезков OX : XY. (Пунктирными линиями показаны точки, лежащие на одной прямой.)
|
|
Сложность: 6 Классы: 9,10,11
|
На острове живут хамелеоны пяти цветов. Когда один хамелеон кусает другого, цвет укушенного хамелеона меняется по некоторому правилу, причём новый цвет зависит только от цвета укусившего и цвета укушенного. Известно, что $2023$ красных хамелеона могут договориться о последовательности укусов, после которой все они станут синими. При каком наименьшем $k$ можно гарантировать, что $k$ красных хамелеонов смогут договориться так, чтобы стать синими?
Например, правила могут быть такими: если красный хамелеон кусает зелёного, укушенный меняет цвет на синий; если зелёный кусает красного, укушенный остаётся красным, то есть «меняет цвет на красный»; если красный хамелеон кусает красного, укушенный меняет цвет на жёлтый, и так далее. (Конкретные правила смены цветов могут быть устроены иначе.)
Страница:
<< 1 2 [Всего задач: 9]