ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Раскин М.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 [Всего задач: 9]      



Задача 65416

Темы:   [ Наглядная геометрия ]
[ Четырехугольная пирамида ]
[ Правильная пирамида ]
Сложность: 3+
Классы: 8,9,10,11

На землю положили квадратную раму, в центре квадрата установили вертикальный шест. Когда на эту конструкцию сверху натянули ткань, получилась маленькая палатка. Если положить рядом вплотную две таких же рамы, в центре каждой поставить вертикальный шест той же длины и натянуть сверху ткань, получится большая палатка. На маленькую палатку ушло 4 квадратных метра ткани. А сколько ткани потребуется для большой палатки?

Прислать комментарий     Решение

Задача 67175

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Связность и разложение на связные компоненты ]
Сложность: 3+
Классы: 6,7,8,9

В параллели 7-х классов 100 учеников, некоторые из которых дружат друг с другом. 1 сентября они организовали несколько клубов, каждый из которых основали три ученика (у каждого клуба свои). Дальше каждый день в каждый клуб вступали те ученики, кто дружил хотя бы с тремя членами клуба. К 19 февраля в клубе «Гепарды» состояли все ученики параллели. Могло ли получиться так, что в клубе «Черепахи» в этот же день состояло ровно 50 учеников?
Прислать комментарий     Решение


Задача 64437

Темы:   [ Повороты на $60^\circ$ и $120^\circ$ ]
[ Свойства симметрий и осей симметрии ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 4-
Классы: 8,9,10

На рисунке изображена снежинка, симметричная относительно поворота вокруг точки O на 60° (при этом повороте каждый луч снежинки переходит в другой луч) и отражения относительно прямой OX. Найдите отношение длин отрезков  OX : XY.  (Пунктирными линиями показаны точки, лежащие на одной прямой.)

Прислать комментарий     Решение

Задача 67194

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 6
Классы: 9,10,11

На острове живут хамелеоны пяти цветов. Когда один хамелеон кусает другого, цвет укушенного хамелеона меняется по некоторому правилу, причём новый цвет зависит только от цвета укусившего и цвета укушенного. Известно, что $2023$ красных хамелеона могут договориться о последовательности укусов, после которой все они станут синими. При каком наименьшем $k$ можно гарантировать, что $k$ красных хамелеонов смогут договориться так, чтобы стать синими?

Например, правила могут быть такими: если красный хамелеон кусает зелёного, укушенный меняет цвет на синий; если зелёный кусает красного, укушенный остаётся красным, то есть «меняет цвет на красный»; если красный хамелеон кусает красного, укушенный меняет цвет на жёлтый, и так далее. (Конкретные правила смены цветов могут быть устроены иначе.)
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .