Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 33]
Четыре внешне одинаковые монетки весят 1, 2, 3 и 4 грамма.
Можно ли за четыре взвешивания на чашечных весах без гирь узнать, какая из них сколько весит?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Фокусник с помощником показывают фокус. В ряд стоят 12 закрытых пустых шкатулок. Фокусник уходит, а зритель на виду у помощника прячет по монетке в любые две шкатулки по своему выбору. Затем возвращается фокусник. Помощник открывает одну шкатулку, в которой нет монетки. Далее фокусник указывает на 4 шкатулки, и их одновременно открывают. Цель фокусника – открыть обе шкатулки с монетками.
Предложите способ, как договориться фокуснику с помощником, чтобы этот фокус всегда удавался.
|
|
Сложность: 3+ Классы: 6,7,8,9
|
Город $N$ представляет собой клетчатый квадрат $9\times9$. За $10$ минут Таня может перейти из любой клетки в соседнюю по стороне. Ваня может открыть в любых двух клетках по станции метро – после этого можно будет перемещаться из одной такой клетки в другую за $10$ минут. Отметьте две клетки, в которых Ване нужно открыть метро, чтобы Таня могла добраться из любой клетки города в любую другую за $2$ часа.
|
|
Сложность: 3+ Классы: 7,8,9
|
При изготовлении партии из N ≥ 5 монет работник по ошибке изготовил две монеты из другого материала (все монеты выглядят одинаково).
Начальник знает, что таких монет ровно две, что они весят одинаково, но отличаются по весу от остальных. Работник знает, какие это монеты и что они легче остальных. Ему нужно, проведя два взвешивания на чашечных весах без гирь,
убедить начальника в том, что фальшивые монеты легче настоящих, и в том, какие именно монеты фальшивые. Может ли он это сделать?
Даны треугольник ABC (AB > AC) и
описанная около него окружность. Постройте циркулем и линейкой
середину дуги BC (не содержащей вершину A), проведя не более
двух линий.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 33]