ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Бородин П.А.

Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Терешин А.

Треугольник $ABC$ вписан в окружность $\omega$. Точка $T$ на прямой $BC$ выбрана так, что прямая $AT$ касается $\omega$. Биссектриса угла $BAC$ пересекает отрезок $BC$ в точке $L$, а окружность $\omega$ в точке $A_0$. Прямая $TA_0$ пересекает $\omega$ в точке $P$. Точка $K$ на отрезке $BC$ такова, что $BL=CK$. Докажите, что $\angle BAP=\angle CAK$.

Вниз   Решение


Автор: Иванов А.

В треугольнике ABC проведена биссектриса AD. Точки M и N являются проекциями вершин B и C на AD. Окружность с диаметром MN пересекает BC в точках X и Y. Докажите, что  ∠BAX = ∠CAY.

ВверхВниз   Решение


Автор: Рябов П.

В треугольнике $ABC$, где $AB < BC$, биссектриса угла $C$ пересекает в точке $P$ прямую, параллельную $AC$ и проходящую через вершину $B$, а в точке $R$ – касательную из вершины $B$ к описанной окружности треугольника. Точка $R'$ симметрична $R$ относительно $AB$. Докажите, что $\angle R'PB = \angle RPA$.

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 [Всего задач: 17]      



Задача 66494

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Сферы (прочее) ]
Сложность: 6
Классы: 8,9,10,11

Женя красила шарообразное яйцо последовательно в пяти красках, погружая его в стакан с очередной краской так, чтобы окрашивалась ровно половина площади поверхности яйца (полсферы). В результате яйцо окрасилось полностью. Докажите, что одна из красок была лишней, то есть если бы Женя не использовала эту краску, а в другие краски погружала бы яйцо так же, то оно всё равно окрасилось бы полностью.
Прислать комментарий     Решение


Задача 105188

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Проектирование помогает решить задачу ]
[ Параллельное проектирование (прочее) ]
[ Малые шевеления ]
[ Аффинная геометрия (прочее) ]
Сложность: 6
Классы: 10,11

Верно ли, что для любых четырёх попарно скрещивающихся прямых можно так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а) трапеции, б) параллелограмма?
Прислать комментарий     Решение


Страница: << 1 2 3 4 [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .