ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Какое наибольшее количество точек самопересечения может иметь замкнутая ломаная, в которой 7 звеньев?

Вниз   Решение


В эстафетном забеге Москва—Петушки участвовали две команды по $20$ человек. Каждая из команд по-своему разделила дистанцию на $20$ не обязательно равных отрезков и распределила их между участниками так, чтобы каждый бежал ровно один отрезок (скорость каждого участника постоянна, но скорости разных участников могут быть различны). Первые участники обеих команд стартовали одновременно, а передача эстафеты происходит мгновенно. Какое максимальное количество обгонов могло быть в таком забеге? Опережение на границе этапов обгоном не считается.

ВверхВниз   Решение


Дан невыпуклый несамопересекающийся четырёхугольник, который имеет три внутренних угла по 45°.
Докажите, что середины его сторон лежат в вершинах квадрата.

ВверхВниз   Решение


Докажите равенство

$\displaystyle {\frac{2}{\pi}}$ = $\displaystyle \sqrt{\frac{1}{2}}$ . $\displaystyle \sqrt{\frac{1}{2}+\frac{1}{2}
\sqrt{\frac{1}{2}}}$ . $\displaystyle \sqrt{\frac{1}{2}+\frac{1}{2}
\sqrt{\frac{1}{2}+\frac{1}{2}
\sqrt{\frac{1}{2}}}}$...


ВверхВниз   Решение


На экране суперкомпьютера напечатано число $11\ldots 1$ ($900$ единиц). Каждую секунду суперкомпьютер заменяет его по следующему правилу. Число записывается в виде $\overline{AB}$, где $B$ состоит из двух его последних цифр, и заменяется на $2\cdot A + 8\cdot B$ (если $B$ начинается на нуль, то он при вычислении опускается). Например, $305$ заменяется на $2\cdot 3 + 8 \cdot 5 = 46$. Если на экране остаётся число, меньшее $100$, то процесс останавливается. Правда ли, что он остановится?

Вверх   Решение

Задача 53349
Темы:    [ Вспомогательные равные треугольники ]
[ Медиана, проведенная к гипотенузе ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Внутри треугольника ABC взята точка P так, что  ∠PAC = ∠PBC.  Из точки P на стороны BC и CA опущены перпендикуляры PM и PK соответственно. Пусть D – середина стороны AB. Докажите, что  DK = DM.


Подсказка

Докажите равенство треугольников KED и DFM, где E и F – середины AP и BP.


Решение

  Пусть  ∠PAC = ∠PBC = α.  Если E и F – середины AP и BP соответственно, то  ∠KEP = ∠MFP = 2α.  Поскольку DE и DF – средние линии треугольника APB, то DEPF – параллелограмм.
  KE = EP = DF  и  ED = FP = FM,  ∠KED = 2α + ∠PED = 2α + ∠PFD = ∠MFD.   Поэтому треугольники KED и DFM равны по двум сторонам и углу между ними. Следовательно,  DK = DM.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1045

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .