ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 63]      



Задача 107808

Темы:   [ Теория игр (прочее) ]
[ Полуинварианты ]
[ Процессы и операции ]
Сложность: 5
Классы: 9,10,11

Али-Баба и разбойник делят клад, состоящий из 100 золотых монет, разложенных в 10 кучек по 10 монет. Али-Баба выбирает 4 кучки, ставит около каждой из них по кружке, откладывает в каждую кружку по несколько монет (не менее одной, но не всю кучку). Разбойник должен как-то переставить кружки, изменив их первоначальное расположение, после чего монеты высыпаются из кружек в те кучки, около которых оказались кружки. Далее Али-Баба снова выбирает 4 кучки из 10, ставит около них кружки, и т. д. В любой момент Али-Баба может уйти, унеся с собой любые три кучки по выбору. Остальные монеты достаются разбойнику. Какое наибольшее число монет сможет унести Али-Баба, если разбойник тоже старается получить побольше монет?
Прислать комментарий     Решение


Задача 79308

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Полуинварианты ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Невыпуклые многоугольники ]
Сложность: 5+
Классы: 9,10,11

Можно ли какой-нибудь выпуклый многоугольник разрезать на конечное число невыпуклых четырёхугольников?
Прислать комментарий     Решение


Задача 35056

Темы:   [ Системы точек и отрезков (прочее) ]
[ Процессы и операции ]
[ Полуинварианты ]
Сложность: 3
Классы: 8,9,10

На плоскости даны 10 точек: несколько из них – белые, а остальные – чёрные. Некоторые точки соединены отрезками. Назовем точку особой, если более половины соединенных с ней точек имеют цвет, отличный от ее цвета. Каждым ходом выбирается одна из особых точек (если такие есть) и перекрашивается в противоположный цвет. Докажите, что через несколько ходов не останется ни одной особой точки.

Прислать комментарий     Решение

Задача 35467

Темы:   [ Средние величины ]
[ Процессы и операции ]
[ Полуинварианты ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9,10

Даны 10 чисел – одна единица и 9 нулей.
Разрешается выбирать два числа и заменять каждое из них их средним арифметическим. Какое наименьшее число может оказаться на месте единицы?

Прислать комментарий     Решение

Задача 97967

Темы:   [ Двоичная система счисления ]
[ Взвешивания ]
[ Полуинварианты ]
Сложность: 4-
Классы: 7,8,9

Автор: Фольклор

В наборе имеются гири массой 1 г, 2 г, 4 г, ... (все степени числа 2), причём среди гирь могут быть одинаковые. На две чашки весов положили гири так, чтобы наступило равновесие. Известно, что на левой чашке все гири различны.
Докажите, что на правой чашке не меньше гирь, чем на левой.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 63]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .