Страница:
<< 7 8 9 10 11 12
13 >> [Всего задач: 62]
|
|
Сложность: 2 Классы: 5,6,7
|
Можно ли разложить 44 шарика на 9 кучек так, чтобы количество шариков в разных кучках было различным?
Имеется множество C, состоящее из n элементов. Сколькими способами можно выбрать в C два подмножества A и B так, чтобы
а) множества A и B не пересекались;
б) множество A содержалось бы в множестве B?
|
|
Сложность: 3+ Классы: 8,9,10
|
Вычислите коэффициент при x100 в многочлене (1 + x + x2 + ... + x100)3 после приведения всех подобных членов.
|
|
Сложность: 4 Классы: 8,9,10
|
Число
A делится на 1, 2, 3, ..., 9. Доказать, что если 2
A представлено в виде суммы натуральных чисел, меньших 10, 2
A =
a1 +
a2 + ... +
ak, то из чисел
a1,
a2, ...,
ak можно выбрать часть, сумма которых равна
A.
|
|
Сложность: 5 Классы: 8,9,10,11
|
На олимпиаду пришло 2018 участников, некоторые
из них знакомы между собой. Будем говорить, что несколько попарно знакомых участников образуют "кружок", если любой другой участник олимпиады не знаком с кем-то
из них. Докажите, что можно рассадить всех участников
олимпиады по 90 аудиториям так, что ни в какой аудитории не будут сидеть все представители какого-либо "кружка".
Страница:
<< 7 8 9 10 11 12
13 >> [Всего задач: 62]