|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что дроби 1000/2001 и 1001/2001 имеют равную длину периодов. Каждая из сторон выпуклого шестиугольника имеет длину больше 1. Всегда ли в нем найдется диагональ длины больше 2? Заполните свободные клетки "шестиугольника" (см. рисунок) целыми числами от 1 до 19 так, чтобы во всех вертикальных и диагональных рядах сумма чисел, стоящих в одном ряду, была бы одна и та же. Можно ли на плоскости расположить 1000 отрезков так, чтобы каждый отрезок обоими концами упирался строго внутрь других отрезков? Пишется наудачу некоторое двузначное число. Какова вероятность того, что сумма цифр этого числа равна 5? На каком расстоянии от сторон правильного шестиугольника находится центр окружности, описанной около данного шестиугольника, если известно, что хорда этой окружности, равная 3, удалена от её центра на расстояние, равное 0,5? Попробуйте быстро найти сумму всех цифр в этой таблице: |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 221]
В каждой клетке прямоугольной таблицы размером M×K написано число. Сумма чисел в каждой строке и в каждом столбце равна 1.
Заполните свободные клетки "шестиугольника" (см. рисунок) целыми числами от 1 до 19 так, чтобы во всех вертикальных и диагональных рядах сумма чисел, стоящих в одном ряду, была бы одна и та же.
Можно ли таблицу 5×5 заполнить числами так, чтобы сумма чисел в каждой строке была положительной, а сумма чисел в каждом столбце – отрицательной?
Даны 16 чисел: 1, 11, 21, 31 и т.д. (каждое следующее на 10 больше предыдущего).
Попробуйте быстро найти сумму всех цифр в этой таблице:
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 221] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|