ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Определение (смотри в справочнике) функций gk,l(x) не позволяет вычислять их значения при  x = 1.  Но, поскольку функции gk,l(x) являются многочленами, они определены и при  x = 1.  Докажите равенство  

б) Какие свойства биномиальных коэффициентов получаются, если в свойства б) – г) из задачи 61522 подставить значение  x = 1?

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 107]      



Задача 61523

Темы:   [ Многочлены Гаусса ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 10,11

а) Определение (смотри в справочнике) функций gk,l(x) не позволяет вычислять их значения при  x = 1.  Но, поскольку функции gk,l(x) являются многочленами, они определены и при  x = 1.  Докажите равенство  

б) Какие свойства биномиальных коэффициентов получаются, если в свойства б) – г) из задачи 61522 подставить значение  x = 1?

Прислать комментарий     Решение

Задача 65279

Темы:   [ Дискретное распределение ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 8,9,10,11

Вероятность того, что купленная лампочка будет работать, равна 0,95.
Сколько нужно купить лампочек, чтобы с вероятностью 0,99 среди них было не менее пяти работающих?

Прислать комментарий     Решение

Задача 76551

Темы:   [ Четность и нечетность ]
[ Треугольник Паскаля и бином Ньютона ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 10,11

В числовом треугольнике

каждое число равно сумме чисел, расположенных в предыдущей строке над этим числом и над его соседями справа и слева (отсутствующие числа считаются равными нулю). Докажите, что в каждой строке, начиная с третьей, найдутся чётные числа.

Прислать комментарий     Решение

Задача 77992

Темы:   [ Уравнения высших степеней (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 11

Найти корни уравнения   

Прислать комментарий     Решение

Задача 116426

Темы:   [ Десятичная система счисления ]
[ Треугольник Паскаля и бином Ньютона ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Сумма цифр натурального числа n равна 100. Может ли сумма цифр числа n³ равняться 1000000?

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .