ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Докажите, что дроби 1000/2001 и 1001/2001 имеют равную длину периодов.

Вниз   Решение


Каждая из сторон выпуклого шестиугольника имеет длину больше 1. Всегда ли в нем найдется диагональ длины больше 2?

ВверхВниз   Решение


Заполните свободные клетки "шестиугольника" (см. рисунок) целыми числами от 1 до 19 так, чтобы во всех вертикальных и диагональных рядах сумма чисел, стоящих в одном ряду, была бы одна и та же.

ВверхВниз   Решение


Можно ли на плоскости расположить 1000 отрезков так, чтобы каждый отрезок обоими концами упирался строго внутрь других отрезков?

ВверхВниз   Решение


Пишется наудачу некоторое двузначное число. Какова вероятность того, что сумма цифр этого числа равна 5?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 60430

Тема:   [ Теория вероятностей (прочее) ]
Сложность: 2+
Классы: 8,9,10

Имеется три ящика, в каждом из которых лежат шары с номерами от 0 до 9. Из каждого ящика вынимается по одному шару. Какова вероятность того, что
а) вынуты три единицы;
б) вынуты три равных числа?

Прислать комментарий     Решение

Задача 60431

Тема:   [ Теория вероятностей (прочее) ]
Сложность: 3-
Классы: 8,9,10

У игрока в преферанс оказалось 4 козыря, а еще 4 находятся на руках у двух его противников. Какова вероятность того, что козыри лягут а) 2 : 2; б) 3 : 1; в) 4 : 0?

Прислать комментарий     Решение


Задача 60429

Тема:   [ Теория вероятностей (прочее) ]
Сложность: 3
Классы: 8,9,10

Пишется наудачу некоторое двузначное число. Какова вероятность того, что сумма цифр этого числа равна 5?

Прислать комментарий     Решение

Задача 65284

Темы:   [ Теория вероятностей (прочее) ]
[ Теория игр (прочее) ]
Сложность: 3
Классы: 8,9,10,11

У Аси и Васи есть три монеты. На разных сторонах одной монеты изображены ножницы и бумага, на сторонах другой монеты – камень и ножницы, на сторонах третьей – бумага и камень. Ножницы побеждают бумагу, бумага побеждает камень и камень побеждает ножницы. Сначала Ася выбирает себе монетку, потом Вася, потом они бросают свои монетки и смотрят, кто выиграл (если выпало одно и то же, то – ничья). Так они делают много раз. Есть ли возможность у Васи выбирать монету так, чтобы вероятность его выигрыша была выше, чем у Аси?

Прислать комментарий     Решение

Задача 65316

Темы:   [ Теория вероятностей (прочее) ]
[ Средние величины ]
Сложность: 3
Классы: 8,9,10,11

Рассеянный Ученый сконструировал прибор, состоящий из датчика и передатчика. Средний срок (математическое ожидание) службы датчика 3 года, средний срок службы передатчика 5 лет. Зная распределения срока службы датчика и передатчика, Рассеянный Ученый вычислил, что средний срок службы всего прибора равен 3 года 8 месяцев. Не ошибся ли Рассеянный Ученый в своих расчетах?

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .